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A new approach to the long-standing problem of interrelating me& and para substituent constants is presented. 
An analysis of the unified a'-scale shows that the interrelation between a: and a:/a! can be modelled by a pair 
of conjugate rectangular hyperbolae, one for normal (n) and the other for special (s) substituents. The latter are 
characterized by a lone electron pair in the first atom. The equations a:, (u:~ - $')/(a:" - 27') = 1'a!, and 
a:, =yo + l o o ~ ,  are derived and discussed in terms of Taft's separation of mesomeric and non-mesomeric effects. 
Asymptotic values 1' = 0.960 and $' = -0.225 were obtained by non-linear least rectangles fitting. A non- 
negligible mesomeric contribution to u0 constants for normal substituents is predicted by the hyperbolic model. 
The present results are at variance with Exner's analysis of the me&-para interrelationship in benzene 
compounds with normal substituents. This divergence is ascribed to opposite views concerning the role of the L- 
inductive effect. 

INTRODUCTION 
The successful development over decades of the 
Hammett equation in its dual and multiparametric 
extensions'.2 has not been accompanied by a comparable 
insight into the relationship linking the reactivities of 
rneta- and para-substituted benzene compounds. This 
situation is surprising because a physico-chemical law 
governing meta-para reactivities within a single 
reaction series should be more fundamental than corre- 
lations between reaction series. 

Exner3 and Shorter4 reviewed previous attempts to 
deal with this problem. Based on Hine's theoretical 
analysisS of the original Hammett equation, McDanie16 
showed that it implied a linear relationship between 
para and meta substituent sigma constants passing 
through the origin. However, this condition was only 
met b the family of substituents with carbon as first 
atom. This apparent paradox has been solved by Wold' 
and is well understood in terms of Sjostrom and Wold's 
shell model of substituent.* The next significant advance 
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in the search for a meta-para reactivity link is due to 
E ~ n e r , ' . ~ * ' ~  who advocates a direct proportionality law 
between para and rneta sigma constants for all polar 
substituents without a lone pair of electrons in the first 
atom. Although Exner's equation is supported by an 
impressive body of experimental data,'-'' it has 
been criticized on theoretical grounds by several 
 author^.^*'^-'^ Notwithstanding these zontributions, a 
comprehensive model for linking rneta and para 
reactivities is still lacking. 

The central idea in this paper is that, in the absence of 
direct or through resonance, there should exist a general 
law correlating the meta and para effect of the same 
substituent on a given benzene compound. It is sought 
by analysing the unified sigma zero scale of substituent 
constants' and a hyperbolic model is proposed and 
discussed. 

ANALYSIS OF THE SIGMA ZERO SCALE 

Reference system 
We consider the unified uo-scale proposed in 1976 by 
Sjostrom and Wold* (SW) as the best available scale for 
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Hammett metu and puro substituent constants. It 
contains (u:, a:) data for 26 substituents which are 
reproduced in Table 1. 

Since the SW scale is the result of a sound statistical 
treatment of data for a large number of different reac- 
tion series, it is not referred to a particular system. It is 
therefore of interest to characterize the corresponding 
reference model system. To this end we resorted to 
Charton’s LDR equation.I6 The result of this correlation 
analysis is shown in Table 2 together with some of 
Charton’s calculations.’6 Judging from the values for 
parameters 7 (a measure of the active centre electronic 
demand) and P, (the percentage delocalized effect), 
SW model system resembles closely the ionization of 
substituted phenylethanoic acids in water (Charton’s set 
P139), as indeed was intended by Sjostrom and Wold.8 
Additionally, it is interesting that the alkaline hydrolysis 
of substituted benzyl benzoates in aqueous propanone 
(Charton’s set P140) could also be regarded as the SW 
model system. 

Proposal of a hyperbolic model 

An interesting pattern separating substituents into two 
broad classes is observed when 0: is plotted vs 
(Figure 1). Following E ~ n e r , ~  substituents without a 
lone pair of electrons in the first (or a)  atom (numbers 
11-26 in Table 1) are referred to as ‘normal’ (n). In 
contrast, substituents with a lone pair of electrons in the 
first atom (numbers 1-10 in Table 1) are herein named 
as ‘special’ (s). We remark that ‘substituent’ hydro en 
must be excluded from this analysis because U : - ~ / L J ~ +  

became indeterminate. The layout of the points in 
Figure 1 suggested to us the drawing of a pair of 
conjugate rectangular hyperbolae: one hyperbola with 
branches in quadrants 1 and 3 (the latter being empty) 
for normal substituents, and the other one in quadrants 2 
and 4 for special substituents. The behaviour of special 
substituents -N(CH,)2 and -NH, with respect to the 
hyperbolae in Figure 1 deserves comment. These are the 
only substituents located in a single branch because their 
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Table 1. Substituent uo values and standard error h‘ 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
I 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Substituent 

Special 
O N ( m 3  )Z 
-NH, 
-OH 
-0CHg 
-NHAc 
-SCH3 
-F 
- C1 
-Br 
-1 

Normal 
-C(cH3)3 

-CH(CH,), 
-C,H, 

- CHg 

-CH,Ph 
-Ph 
-CO,H 
-CO,R 
-corn 
-COCHg 
-CHO 
- CF3 
--SO,NH, 
- CN 
--So,cH, 
-NO, 

meta para paralmeta 

h3 

-0.095 
-0.087 
0.023 
0.102 
0.144 
0.142 
0.335 
0.365 
0.369 
0.343 

4.087 
-0.062 
-0.082 
-0.077 
-0-047 
0.041 
0.356 
0.349 
0.362 
0.360 
0.410 
0.464 
0-578 
0.622 
0.685 
0.713 

0.010 
0,006 
0.009 
0.004 
0.012 
0.020 
0.006 
0.004 
0.004 
0.005 

0.012 
0.003 
0.016 
0.013 
0.020 
0.016 
0.020 
0.009 
0.020 
0.008 
0.014 
0.007 
0.014 
0.006 
0.009 
0.004 

-0.317 
-0.295 
-0.221 
-0.120 
0.002 
0.063 
0-151 
0.242 
0.265 
0.277 

-0.150 
-0.135 
-0.132 
-0-127 
-0.058 
0.051 
0.440 
0.441 
0.456 
0.469 
0.473 
0.538 
0.582 
0.714 
0.728 
0.814 

h4 

0.013 
0.010 
0-013 
0.006 
0.014 
0.020 
0.006 
0-004 
0.004 
0.005 

0.008 
0.003 
0.008 
0.010 
0.014 
0.011 
0.019 
0.008 
0.012 
0.011 
0.022 
0.011 
0.013 
0.008 
0.01 1 
0.006 

3.337 
3.391 
-9.609 
-1.176 
0.014 
0.444 
0.451 
0.663 
0.718 
0.808 

1.724 
2.177 
1.610 
1.649 
1.234 
1.244 
1.236 
1.264 
1.260 
1.303 
1.154 
1.159 
1.007 
1.148 
1.063 
1.142 

h4, 

0.469 
0.396 
5.445 
0-080 
0.084 
0.154 
0.020 
0-013 
0.013 
0,019 

0.210 
0.116 
0-250 
0.273 
0.562 
0.513 
0.087 
0.039 
0.069 
0.046 
0.071 
0.031 
0.033 
0-018 
0.022 
0.011 

‘Data for uD and h taken from Ref. 8. 
bCalculated by h,, = (hi&+ h : u ~ * ) ’ P / a ~ * .  
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Table 2. Correlation analysis of the uo scale by the LDR equation 

System' nb L 

meta 
0,o' 26 1.03 
PI83 17 0-94 

para 
U,O' 26 1.05, 
PI 39 17 0.90 
P140 13 1.10 
PI82 18 0-98 

0.03 0.39 0.02 -0.02 0.11 -0.06 
0.06 0.46 0.06 0.73 0.37 1.59 

0.04 0.78 0.03 -0.26 0.15 -0.33 
0.03 0.60 0.03 -0.23 0.12 -0.38 
0.03 0.72 0.05 -0-21 0.20 -0.29 
0.03 1 .oo 0.02 0.87 0.17 0.87 

P D e  R' 

27.5 0.994 
32.8 0.980 

42.7 0.994 
40.2 0.994 
39.6 0.998 
50.6 0.998 

*Charton's primary sets:'6 P183, -pK., 3-substituted benzoic acids, water, 25 " C  P139. -pK., 4-substituted phenylethanoic acids, 75% (v/v) aq. 
ethanol, 25 "C P140, log k, 4-substituted benzyl benzoates+ OH-, 70% (v/v) aq. propanone, 25 " C  P182, -pK., 4-substituted benzoic acids. water. 
25 OC. 
'Number of data points. 
'Standard errors of the regression coefficients. 

'PD = IOOD/(L + D) .  
'Multiple correlation coefficient. 
'For the substituents listed in Table 1 except -SO,NH, (No. 23). uo Values for -CO,R (No. 18) were used twice to correlate with Charton's 
electrical constants for -CO,CH, and -CO,GH,. 

I]= RID. 

1.0-0; 

0.8 - 

0.6 - 

I 

-10 -8 -6 -4 -2 o / '  
4. 
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-1.0 1 1  
Figure 1. Interrelationship between u: and u:/u!. Numbering as in Table 1 

u: and uj  values are both negative, thus they differ 
from all other special substituents in Table 1. We note 
further that the statistical SW values for the u! constant 
of substituents 1 and 2 are near the average of the rather 
different values previously proposed in the literature and 
discussed by Hoefnagel and We~ster . '~  

Conjugate hyperbolae have common asymptotes, 
which in our case are defined by the lines 

Explicit equations for rectangular hyperbolae n and s 
are 

0 0  0 0 

(3) 
o y 0 4 n h  + ~ n  

ff4n = 0 0 1o 

0 r0.40,1u39, + EsO 

o:/u; = A0 (1) o:s/u;s - A0 

0 4 n h i  - 

(4) 04s = 

u: = yo  

where lo  and yo are constants. 
( 2 )  and the condition for conjugate hyperbolae is 

.: + &: = -2y0A0 ( 5 )  
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The fitting of uo constants by equations (3) and (4) is 
now discussed. Since the variables a: and ut/ut  are 
interdependent, none of them is a suitable independent 
variable for least-squares regression analysis. This fact 
was appreciated by Kalfus et a/.," who, for a linear 
correlation, took the arithmetic mean of the regression 
coefficients for the direct and the inverse least-squares 
correlations. We believe that the correct approach to this 
problem is to find the minimum sum of the rectangle 
area defined by the distances between the experimental 
point and the fitting curve along both axes. This statis- 
tical treatment is known as the least rectangles method." 
It has the important property of yielding identical 
regression parameters when both variables are inter- 
changed. If applied to a linear correlation, it gives the 
principal axis or orthogonal regression line whose 
regression coefficient is the geometric mean of the two 
regression coefficients obtained by ordinary least- 
squares fitting." 

The assumption of conjugate n and s hyperbolae 
permits us to fit jointly the whole data because a point 
belonging to hyperbola s with coordinates (uts, ats/ugs) 
can be transposed to the point (u :~ ,  O : J U : ~ , ~ ) ,  where 

falling on hyperbola n. In this way, points in quadrants 
2 and 4 are transposed to quadrants 1 and 3, 
respectively. 

Each rectangle area in our hyperbolic model is given 
by 

where 0," stands for both at,, and uiS, and u: is either 
a;" or C J ; ~ , , ~ .  For a hyperbola lying in the first and third 
quadrants, it follows from geometrical reasons that both 
distances defining rectangle area R have the same sign, 
thus ensuring that each term calculated by equation (7) 
is positive. The availability of standard errors h for the 
unified a' constants* enable us to weight R terms by a 
weighting factor w =  l/h4h4,3. The sum to minimize is 
thus 

S = wiRi 

Since a general-purpose non-linear algorithm is required 
to obtain this least rectangle area sum, we wrote a 
program based on the Luus-Jaakola method," the 
technical details of which are given in the Appendix. 

Some algebraic restrictions follow from the peculiar 
variables we are using. Thus, if a:$ = 0 then u:s/ays = 0 
provided ut% # 0. Hence one should have the theoretical 
value &,OLh = 0 in equation (4) and the hyperbola s would 
degenerate to the straight line 

I 

a:, = yo + AOUg, (8) 

In its turn, the theoretical value E:* = 0 together with 
equation (5) leads to &ih = -2y0A0 and, by equation (3), 
to 

u:"(u:" - yo)/(o:" - 2 y 0 )  = AOa;" (9) 
Now we note that if equation (6) is solved for and 
this result is inserted into equation (8), then one obtains 
a relationship between and u;s,tr with the form of 
equation (9). Also, it can be shown that equation (9) 
represents a non-rectangular hyperbolic relationshi 
between at,, and u:,, with asymptotes a:" = - yo  + A'a,, 
and a:,, = 2 yo. 

The foregoing analysis shows that the relevant 
parameters in our hyperbolic model are the asymptotic 
values Ao and yo defined by equations (1) and (2), 
respectively. However, because we are dealing with 
statistical quantities (Ref.l, p. 59), a three-parameter fit 
was performed giving A'= 0,960, yo  = -0.225 and 
E: = 0.342 (E: = 0.433). The resulting hyperbola is 
shown in Figure 2, where points for special substituents 
have abscissae transposed by means of equation (6). 

The theoretical hyperbola linking para and meta 
substituent constants is represented by two-parameter 
equation (9) and it is shown in Figure 3. Points for 
special substituents corresponding to the linear equation 
(8) are rather scattered and are not shown. Instead, we 
used u& values, which fit equation (9) nicely. This 
situation is readily explained by Wold's conclusion7 that 
'small deviations within one framework can correspond 
to large deviations within another framework.' Figure 3 
deserves further comment. First we note that points for 
normal and special substituents are correlated by a 
single branch of the theoretical hyperbola. In particular, 
the peculiar location of substituents 1 and 2 observed in 
Figures 1 and 2 does not show up in the representation 
used in Figure 3. The three- arameter h perbola 

where .$/Ao+ y0=0.131, and u:= -&;/Ao= -0-356 
would give a slightly improved correlation. Second, it is 
interesting that the curve passes through the origin, i.e. 
the point for hydrogen which should then be classified 
as a normal substituent. It can be further shown that this 
geometrical property is also present in the three-parame- 
ter hyperbola. Finally, by differentiating equation (9) 
with respect u:,, the indeterminate value for u ~ - , / u ~ - ,  
is fixed equal to 2A0. This is the slope of the tangent to 
the hyperbola of Figure 3 at the origin. 

l? 

[equation (3)] with asymptotes 2 = E ; / A O  + y P + AOu;, 

Dual electronic effect and the hyperbolic model 
Following the original work by Taft*" on a dual- 
parameter extension of the Hammett equation, several 
improvements and other similar treatments have been 
p~b1ished.l'~ Their common feature is to consider two 
independent mechanisms for transmitting the electronic 
effect of a substituent in a meta or para position, here 
referred to as M (loosely standing for mesomeric) and 
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-5 -3  

Figure 2. Interrelationship between u: and u:/u: [equation(3)]. 0 ,  Normal substituents with coordinates (utn, utn/u:n); *, special 
substituents with coordinates (ut,, u:,/u:,,w). Numbering as in Table 1 

4 

0.8 

0.6 

0 .4  

5 u q  11 

3 

-0.4 

I I 

0.2 0 . 4  o l s  a; 

I a: = 27" 

Figure 3. Interrelationship between u! and uy or u!, ,~; 0, 
Normal substituents with coordinates (u:,,, &); e ,  special 
substituents with coordinates ( u ? ~ ,  u :~ , ,~ ) .  The lines drawn are 
for the theoretical two-parameter hyperbola [equation (9)] and 

its asymptotes. Numbering as in Table 1 

N (for non-mesomeric) without going into details. For 
the present purpose, we have only to accept that N can 
be increased indefinitely whereas M is limited by finite 
upper and lower values. 

By adapting Hine's clear presentation" of the dual 
se aration method, we write in self-evident notation for 
u constants of both normal and special substituents f 

u: = + ptNN (10) 

u , O = M + N  (11) 
thus fixing p:M = p4ON = 1. It follows from equations (10) 
and (11) that .," = ( - P k f / p ; N  ) M  + ( / p : N  )u: (12) 
It is also well known3 that relationships between 0; and 
u: for the same substituent are matched by relationships 
between M and N .  

Inserting equations (10) and (11) into theoretical 
equation (8) leads, for special substituents, to 

Given our reasonable assumption on the range of 
possible values for M and N ,  then from equation (1 3) 
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Hence, provided p:N f &, the above limit condition 
can only be fulfilled if 

Lo = 1/p:)) (14) 
This result, besides conferring a theoretical meaning to 
the parameter Lo,  allows the simplification of equation 
(13), leading to 

(15) M ,  = ro/u - A o P ; M )  

which means that the value for the-M-effect is a constant 
in all special substituents. It should be stressed that this 
conclusion follows directly from Taft's dual parameter 
model equation (12) combined with equation (14) and 
the linear relationship between CJ:~ and ais in the form 
of equation (8). Additionally, equation (15) suggests 
that parameter yo of our hyperbolic model is intimately 
related to the M-effect. 

It follows from equations (9)-(11) and (14) that 

(16) 
Equation (16), interrelating M and N values for normal 
substituents, is a hyperbola with asymptotes 

The ubiquity of the transmission coefficient p;M in 
the equations in this section is striking. Its value can 
only be fixed by means of the much debated*'-" scaling 
of electronic substituent constant values. However. an 

Mn = 2y0 - Nn and M. = - yo / (  1 - AOp;,). 

upper bounding value for pyM can be inferred from our 
hyperbolic model. First we note that the hyperbola for 
normal substituents represented by equation (16) passes 
through the origin, which corresponds to hydrogen, 
where 

Since one should expect to find points in the third 
quadrant (those for normal substituents with M < 0 and 
N<O), this derivative must be finite and positive. 
Hence, from equation (17), p:M < 1/2A0. Because piM is 
a non-negative parameter, by using our best estimate for 
Lo we obtain 

(18) 
Further, these boundary values ensure that the curve 
interrelating M and N values also has points in the first 
( M > O ,  N>O) and fourth (M<O, N>O) quadrants, and 
predict a vacant second quadrant (M > 0, N < 0). Equa- 
tion (15) for special substituents and equation (16) for 
normal substituents, together with the latter's asymp- 
totes, are illustrated in Figure 4 on the basis of an 
arbitrarily chosen piM = 1/3. 

0 < p:M < 0.52 

DISCUSSION 

Parameter Xo 
Exner's equation for expressing the meta-para interre- 
lationship is restricted to normal substituents. It reads 

0 4 n  = LCJ jn  (19) 

1 M 0.4 

1 
M = -yo / (1 

0.2 - 

n 
I I I I t 1 I N  

-0 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

M = y o  /(I - PPP;,) 

-0.6 - . . 
. . 

-0.8 - . 
Figure 4. Schematic representation of M and N contributions to oo constants. Hyperbolic e uation (16) and its asymptotes for 

normal substituents and equation (15) for special substituents with AM = 1/3 
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and A values in the small interval 1.13- 1.17 have been 
reportedg-’* for the ionization of benzoic acid deriva- 
tives in aqueous and non-aqueous solvents. In our 
opinion, the virtue of Exner’s analysis of the 
meta-para problem has been to recognize that the 
decisive feature for classifying a given substituent is the 
presence or absence of a lone electron pair in its first 
atom. Exner’s insight is confirmed by our hyperbolic 
analysis of the unified a’-scale. Fitting experiments 
reported in the Appendix show that substituents 
-SO,NH,, -SO,CH, and -NO, are best grouped 
together with other normal, carbon-family substituents 
rather than with special, heteroatom-family substituents. 

Least rectangles fitting of (unweighted) u: values 
from Table 1 to equation (1 9) yields 

atn= -0.02+ 1 . 1 8 ~ : ~  (r=0.993) (20) 

a result within the approximation of Exner’s equation. 
Although our hyperbolic model asymptote lo and slope 
1 from equation (19) are intended to measure the same 
physico-chemical quantity [see equation (14)], the 
consequences of their numerically different values are 
opposite. The single, smaller than unity Ao value com- 
mon to normal and special substituents means that non- 
mesomeric effects are slightly better transmitted to the 
reaction centre from the meta than the para osition, in 
accordance with chemical intuition. Also, A’= 0.960 is 
in excellent agreement with Ehrenson’s estimates2’ 
0.936 and 0.966 of the same quantity for uo reactivities 
by using a non-linear procedure,and with the evidence 
presented by Hoefnagel et ~ 1 . ~ ~  for the metalpara ratio 
of the inductive (or non-mesomeric) effect. Performing 
Exner’s analysis with a: values led to equation (20) and 
thus to the opposite conclusion. Therefore, it cannot be 
reconciled with our hyperbolic model. On the other 
hand, a parameter A should in general be a function of 
the skeletal structure of a given benzene compound. 
This is contrary to Taft’s a s s ~ m p t i o n ~ ~ . ~ ~ * ~ ~  of the 
inductive effect being transmitted equally from meta- 
and from para-positions in all reaction series of 
benzene derivatives. 

Parameter yo 

The hyperbolic model asymptotic value yo is a parame- 
ter with a simple physical definition. Refemng to Figure 
1, yo can be defined as the non-zero u: value to which 
corresponds an infinitely large ai/a: ratio and thus a 
zero-valued ui substituent constant. Therefore, yo is 
expressed in sigma units. Since this is the first time that 
parameter yo has been defined, a detailed analysis of 
this quantity is appropriate. The choice of conjugate 
rectangular hyperbolae to construct our model was 
based on the empirical evidence illustrated in Figure 1. 
Consequently, common yo values for normal and 
special substituents were assumed. Now it can be shown 
that if Taft’s dual equations (10) and (1 1) with identical 

transmission coefficients are to be applied to normal and 
special substituents, then y,”= y: as we have assumed. 
This assumption also leads to equal upper and lower 
limiting values for the M-effect. As shown in Figure 4, 
the lower limit is the constant value M, given by equa- 
tion (15) and the upper limit is the asymptotic value 
M, = -MS. This finding is clearly in agreement with the 
expected behaviour of the M-effect in systems insulated 
in relation to through-resonance effects. 

It follows from this analysis that the parameter y o  is a 
measure of the largest possible M-effect by a substituent 
in the reference system for the sigma-zero scale. It has 
the same sign as the M-effect of special substituents. 
The physico-chemical significance of the quantity yo 
should became clearer when y-values are obtained for a 
variety of chemical processes involving different 
benzene derivatives. Nonetheless, it can be anticipated 
that the ratio y / y o  gives the sensitivity to mesomeric 
effects of a given system in relation to the standard 
reaction. 

Separation of M and N effects 

As shown in Figure 4, a resolution of mesomeric (M) 
and non-mesomeric ( N )  contributions to uo constants 
arises from combining Taft’s equations for dual elec- 
tronic effects with our hyperbolic meta-para 
interrelationship. M and N values are, however, depen- 
dent on the transmission coefficient &, which 
corresponds to Taft’s parameter a and whose fixing 
needs some sort of scaling. In spite of this limitation, 
some conclusions can be drawn. One is that the constant 
M, value given by equation (15) can explain the finding 
by Hoefnagel and Wepster”that ‘the most important and 
intriguin generalization is that, in contradiction with 
listed aR values, simple first-row substituents have 
essentially identical 0;; values of about -0.35.’ If this 
value is used for M,, then from equation (15) 
&=0.37, which, although far from its maximum 
value, is a reasonable result in view of equation (18). 
Wells29 reviewed the various a values in the literature 
and opined that for insulated reaction series a should 
have its maximum value. In accordance with our analy- 
sis this equals 1/2d0 or 0.52. We note further that Taft 
and Lewis” found a to be 0.50 for their uo scale while 
using A’= 1. Another conclusion is concerned with the 
proposal by Pollet and Van P o ~ c k e , ~ ’  who, based on 
Exner’s ana ly~ i s ,~  suggested using the difference 
a:s - loup, as a measure of mesomeric effects in special 
substituents. Exner and Lakomy,” while supporting this 
proposal, add that ‘with increasing positive inductive 
effect the negative mesomeric effect diminishes and in 
the limiting case is equal to zero.’ Since it  follows from 
equations (8) and (15) that 

P 

this difference is indeed directly related to M,, although 
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we use a numerical value for A' different from Exner's. 
However, contrary to Exner and Lakomg's expecta- 
t i ~ n , ~ '  equation (15) predicts a non-variable negative 
mesomeric effect in special substituents. 

Next we discuss Exner's c ~ n t e n t i o n ' ~ ~ ~ ~ " ~ ~ ~ ~  that 
mesomeric effects are negligible in normal substituents 
with the possible exception'*"." of carbonyl substitu- 
ents. This much c r i t i ~ i z e d ~ , ' ~ - ' ~  consequence of equation 
(19) is dismissed by our analysis of the meta-para 
interrelationship. Inspection of Figure 3 reveals that the 
hyperbolic model introduces a slight curvature in 
Exner's straight line. However, this modification is 
enough to make provision for a non-negligible meso- 
meric effect in normal substituents. In fact, equation (9) 
can be rewritten as 

a:" - nou;, = -y'/(l- 2 y O / a 3  

On the other hand, combining equations (10) and (11) 
with equation (14) yields 

Now it follows from equations (21) and (22) that 

It is true that if M, = O  for all normal substituents then 
equation (22) would reduce to Exner's equation. How- 
ever, this would imply y'=O, as can be seen from 
equation (21). In contrast, given our estimates for the 
parameters appearing in equation (23), with increasing 
positive a:" values the positive mesomeric effect 
increases and in the limiting case is equal to -M,. An 
equivalent conclusion can be drawn from equation (16). 

Finally, a theoretical interpretation is in order. Con- 
sidering (i) the unified a'-scale is referred to a model 
system in which through-resonance between substitu- 
ents and the reactive centre is inoperative, (ii) there is 
an appreciable M-effect in polar substituents even from 
the meta position and (iii) for attaining the maximum 
M-effect the presence of an electron pair in an atom next 
to the benzene ring in the para position suffices, we are 
led to the apparently startling interpretation that the M -  
effect appearing in Taft's equations (10) and (11) is 
most probably the polarization of benzene n-bonds 
resulting from interaction with substituents. The concept 
of non-classical or n-inductive effect is due to Everard 
and S ~ t t o n , ~ ~  and we observe that Dewar and co- 
workers of substituent effects 'book-keeps' 
jointly mesomeric interactions and n-inductive effects. 
However, we cannot forget that E~ner'.~. ' '  considers the 
n-inductive effect as a non-mesomeric effect which he 
invokes to justify a slope 1 in equation (19) larger than 
unity. Setting aside the semantics involved, we continue 
to be at variance with Exner because this is not just a 
matter of different book-keeping. In fact, our criterion 
for distinguishing M from N effects was their different 
range of variation. In short, for M-effects we understand 
those electronic effects in which n-electrons participate 

that are bounded by upper and lower limits and that are 
not proportional to other, N-effects. In contrast, Exner's 
analysis implies a problematic proportionality between 
the n-inductive effect and other polar and field effects, 
or identical transmission coefficients. Lastly, it should 
be emphasized that our interpretation of M- and N- 
effects follows closely Taft's proposed separation 
between resonance ( R )  and inductive ( I )  effects. Since 
the n-inductive effect can be regarded as arising from 
mesomeric interactions, it is a resonance polar effect as 
defined by Taft and Lewis.27 Such a term should then be 
included in the R values, not in the I  value^.^^^^^ 

CONCLUSIONS 
An analysis of the unified u0-scale8 with the aim of 
unravelling the meta-para interrelationship in benzene 
derivatives has led to the following conclusions. By a 
shifting from the conventional plot of u: vs u: to the 
representation of ut vs (Figure l) ,  two groups of 
substituents are differentiated according to the presence 
or absence of a lone electron pair in the substituent atom 
attached to the benzene ring. Substituents belonging to 
these groups are called special or normal, respectively. 
To model this interrelationship, conjugate rectangular 
hyperbolae were fitted to the data by using a non-linear 
least rectangles procedure. Because of algebraic con- 
straints, only the asymptotic values (designated by Ao 
and yo )  were found to be theoretically important. 
Although necessitating two different equations (one for 
each ou of substituents), single-valued parameters 1' 
and y suffice to describe the whole data. 

Taft's dual substituent parameter treatment is 
employed to interpret our results. Two independent 
mechanisms for transmitting electronic effects are 
considered and freely designated as mesomeric (M) and 
non-mesomeric (N). It is shown that parameter A' is 
equal to the para/meta ratio of transmission coefficients 
for the N-effect, and that the new parameter yo is 
directly proportional to limiting values for the M-effect. 
On the basis of A'= 0.96, a new upper boundary value 
equal to 0.52 is found for the metalpara ratio (Taft's 
symbol a )  of transmission coefficients for the M-effect 
[equation (1 S)]. 

In the representation of para vs meta uo constants 
for normal substituents, our hyperbolic model intro- 
duces a slight curvature in relation to Exner's straight 
line (Figure 3). As a consequence, a 1' value smaller 
than unity and a non-zero M-effect in normal substitu- 
ents were found, in contradiction with Exner's 
analysis I .9.10.32 of these problems. The origin of this 
disagreement is ascribed to opposite views concerning 
the role of the n-inductive effect. In accordance with 
Dewar and co-workers' analysis,"-36 we have con- 
cluded that the n-inductive effect is indistinguishable 
from other mesomeric interactions that are bound by 
small limiting values. On the other hand, Exner has 

$ P  
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associated the n-inductive effect with field and other 
inductive effects. 30. R. Pollet and R. Van Poucke, Tetrahedron Lett. 

29. P. R. Wells, Chem. Rev. 63,  171-219 (1963). 

4741-4751 (1965). 
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APPENDIX 

Non-linear fitting procedure 
Luus and Jaakola’’ proposed a simple optimization 
method for solving nonlinear programming problems. 
It is based on a direct search procedure utilizing pseudo- 
random numbers over a region whose size is reduced 
after each iteration. In our least rectangles problem, 
initial estimates for the fitting parameters were sug- 
gested by Figure 1. The number of iteractions was made 
equal to 100 and in each iteration 100 trials were 
performed. The searching interval began at 0.2 for all 
parameters and the reduction factor was 0.05. A con- 
straint was introduced to avoid a combination of 
parameter values leading to a negative rectangle area. 
The Luus-Jaakola method was programmed in Turbo- 
Pascal version 5.0 and executed on a PC-compatible 
computer, model 486, 33 MHz. For each fitting experi- 
ment, a good convergence was obtained in less than 5 s 
of execution time, not including the printout of results. 

Classifying substitutents --SO,NH,, --SO,CH, and 

The unified oO-scales includes three substituents whose 
first atom is a heterotatom without a lone electron pair. 

-NOz 

Table A l .  Fitting by three-parameter hyperbola 
of -SO,NH,, -SO,CH, and -NO, as a 

normal or as a special substituent 

dS” 

Substituent Normal Special 

-S02NH2 754 1116 
-SO,CH, 25 1 3261 
-NO, <1 1 1896 

‘Increase in the sum of rectangle areac ( S = Z , w , R , )  
over the best fit for the other 23 substituents in Table 1. 
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The remaining data for 13 normal and 10 special 
substituents were taken as the basic set. Then the data 
for each of the substituents -S02NH,, -SO,CH, and 
-NO,, considered alternatively as a normal or as a 
special substituent, were added once to the basic set. 

Table A1 reports the resulting increase in the sum of 
weighted least rectangle areas over the basic set. In all 
cases studied, these substituents are better described as 
normal substituents. 




